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The influence of non-equilibrium surfactant
dynamics on the flow of a semi-infinite bubble

in a rigid cylindrical capillary tube
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We have utilized a computational model of semi-infinite air bubble progression in
a surfactant-doped, fluid-filled rigid capillary to investigate the continual interfacial
expansion dynamics that occur during the opening of collapsed pulmonary airways.
This model simulates mixed-kinetic conditions with nonlinear surfactant equations
of state similar to those of pulmonary surfactant. Several dimensionless parameters
govern the system responses: the capillary number (Ca) that relates viscous to surface
tension forces; the elasticity number (El ), a measure of the ability of surfactant to
modify the surface tension; the bulk Péclet number (Pe), relating bulk convection
rates to diffusion rates; the adsorption and desorption Stanton numbers (Sta and Std)
that relate the adsorption/desorption rates to surface convective rates; and finally the
adsorption depth (λ), a dimensionless bulk surfactant concentration parameter. We
investigated this model by performing detailed parameter variation studies at fixed
and variable equilibrium concentrations. We find that the surfactant properties can
strongly influence the interfacial pressure drop through modification of the surface
tension and the creation of Marangoni stresses that influence the viscous stresses
along the interface. In addition, these studies demonstrate that, depending upon the
range of parameters, either film thickening or film thinning responses are possible.
In particular, we find that when Pe � 1 (as with pulmonary surfactant) or when
sorption rates are low, concentration profiles can substantially differ from near-
equilibrium approximations and can result in film thinning. These responses may
influence stresses on epithelial cells that line pulmonary airways and the stability of
these airways, and may be important to the delivery of exogenous surfactant to deep
regions of the lung.

1. Introduction
The lung contains a bifurcating network of large and small airways which conduct

air to and from the alveoli – the primary site of gas exchange with the blood. Closure
of the small airways can occur when the lung reaches very low volumes (Levitzky
1991). Healthy adults are able to reopen these airways on the next inspiratory effort.
However, patients suffering from emphysema and cystic fibrosis, and infants with
respiratory distress syndrome cannot generate the pressures required to reopen their
airways. These conditions often result in atelectasis and/or local hypoventilation.
Pulmonary surfactant insufficiency, deficient tethering forces, and an increase in fluid

† Author to whom correspondence should be addressed: donald.gaver@tulane.edu



166 S. N. Ghadiali and D. P. Gaver

Finger of air

Rf R

C*

P*
bub = 0

C*
s C*

U

z*
r*s*

Bulk fluid

t̂

n̂

u* = u*
s t̂  + u*

n n̂

�,�

Figure 1. Schematic representation of the theoretical model in an axisymmetric
coordinate system.

viscosity have been suggested as possible mechanisms by which airways remain closed
(Enhörning & Holm 1993; Gaver, Samsel & Solway 1990; Kamm & Schroter 1989;
Macklem, Proctor & Hogg 1970; Otis et al. 1993; Perun & Gaver 1995).

Airway closure occurs when a liquid occlusion spans the airway and blocks airflow.
This occlusion can be extensive (as occurs prior to an infant’s first breath or in
atelectasis), or consist of a short meniscus (i.e. a mucous plug). The research described
in this paper relates to reopening an extended region of closure, wherein a semi-
infinite air bubble penetrates and displaces the liquid occlusion (see figure 1). A
classic problem in the hydrodynamic literature related to pulmonary airway reopening
involves semi-infinite bubble progression in a rigid capillary tube. This system was
originally studied by Bretherton (1961), Fairbrother & Stubbs (1935) and Taylor
(1961). These asymptotic studies formulated a relationship between the dimensionless
interfacial pressure drop, P ∗/(γ ∗/R) and the capillary number, Ca = µU/γ ∗ in the
limit of small Ca. P ∗ is the dimensional pressure drop across the air–liquid interface
near the bubble tip, γ ∗ is the surface tension, R is the radius of the tube, µ is the fluid
viscosity, and U is the bubble speed. Ca is a dimensionless velocity that represents
the relationship of viscous to surface tension stresses. In addition, several numerical
studies (Lu & Chang 1989; Martinez & Udell 1989; Reinelt & Saffman 1985; Shen &
Udell 1985; Westborg & Hassager 1989) have extended these results to large Ca (i.e.
O(1)) and have elucidated the flow field surrounding the bubble. These simulations
show that at low Ca a diverging stagnation ring exists that directs fluid towards both
the tip and thin film (see figure 6b). As Ca increases, this stagnation ring merges with
the tip, and directs fluid unidirectionally towards the thin film (see figure 6a). This
behaviour has important implications for surfactant deposition. However, these studies
assumed a constant γ ∗ and therefore neglected the influence of surfactant. Surfactant
modifies the flow field by altering the local surface tension and mechanical stress
balance at the air–liquid interface. In rigid tubes, these interactions modify the
interfacial shape, flow patterns and pressure drop and therefore affect interfacial
dynamics.

In coupling surfactant physicochemistry and fluid mechanics it is important to
understand the mechanisms of surfactant action and transport. Surfactant can reside
in two phases: a bulk phase, C∗, and a surface phase, Γ ∗. The surface phase directly
modifies the interfacial surface tension by the surfactant equation of state, γ ∗ = f (Γ ∗).
In general, the equation of state is a nonlinear function where increasing Γ ∗ reduces
γ ∗; however regions exist where dγ ∗/dΓ ∗ is nearly zero (Tchoreloff et al. 1991). In a
static system, an equilibrium relationship between C∗ and Γ ∗ exists, with an associated
equilibrium surface tension γeq . The interface becomes saturated with surfactant as
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C∗ increases, resulting in a maximum equilibrium surface concentration Γsat , which
determines the minimum equilibrium surface tension in a static system, γsat . In
a dynamic system, Γ ∗ (and thus γ ∗) can vary as a function of interfacial pos-
ition. In addition, Γ ∗ can exceed Γsat under dynamic conditions due to surface
compression (as occurs in the alveoli in vivo or experimentally in a Langmuir
trough), which can reduce γ ∗ significantly (Krueger & Gaver 2000; Tchoreloff et al.
1991).

The transport of surfactant to the interface can be described by a two-step serial
process. First, bulk surfactants are convected and diffused to (or away from) a region
near the interface, the sub-surface. The mass flux of surfactant (j ∗

n ) due to bulk
transport processes is a function of the bulk concentration field, C∗(r∗, z∗). Second,
surfactant molecules are adsorbed onto (or desorbed from) the interface. The mass
flux of surfactant due to adsorption/desorption processes is a function of both the sub-
surface concentration, C∗

s , and the interfacial concentration, Γ ∗. The overall transport
or flux of surfactant to the interface is limited by the slower of these two processes.
Specifically, if the bulk transport of surfactant is much faster than the adsorptive
transport the system is classified as a bulk-equilibrium case. Under these conditions, the
bulk concentration will be uniform and the bulk transport equation does not have to
be explicitly solved. On the other hand, if the adsorptive transport is much faster
than the bulk transport the system is classified as a diffusion-limited case. Under these
conditions, Γ ∗ is always in equilibrium with C∗

s and the surface transport equation
does not have to be explicitly solved. Therefore, the bulk and surface transport
equations are decoupled and do not have to be solved simultaneously under bulk-
equilibrium or diffusion-limited conditions. However, when the bulk and adsorptive
transport rates are comparable the bulk and surface transport equations are coupled
and must be solved simultaneously. Under these conditions the system is classified
as a mixed-kinetics case. These transport interactions determine the distribution of
surfactant in the bulk and along the interface. This distribution establishes a stress
balance along the interface via the equation of state and thus has an impact on airway
reopening pressures and stresses.

Several investigators (Ginley & Radke 1988; Ratulowski & Chang 1990; Stebe &
Barthès-Biesel 1995) have studied the interaction between surfactant physicochemistry
and fluid mechanics in a semi-infinite bubble progression model. Ratulowski & Chang
(1990) found that the presence of trace quantities of surfactants could increase the
dimensionless opening pressure, P ∗/(γ ∗/R), under diffusion-limited conditions. How-
ever, this model is not capable of simulating large deviations from equilibrium and/or
elevated surfactant concentrations. Stebe & Barthès-Biesel (1995) demonstrated that
an increase in P ∗/(γ ∗/R) could also occur at elevated surfactant concentrations if
the adsorption processes were slow. Note that these studies are only valid for low
Ca. Since all transport parameters are scaled with Ca, these studies can not simulate
O(1) deviations from equilibrium. In contrast the current numerical model is able to
simulate large values of Ca and surfactant transport parameters.

The most common technique to compute non-equilibrium surfactant interactions
in a free-surface system is a combined boundary element method (BEM) to solve
Stokes flow equations and finite difference method to solve the surface transport
equations. For an insoluble surfactant, the bulk concentration is not important since
surfactant molecules reside only on the interface. Stone & Leal (1990) investigated the
deformation and breakup of liquid drops, while Milliken, Stone & Leal (1993) and
Eggleton, Pawar & Stebe (1999) studied the stretching of a viscous drop under uniaxial
extensional flow conditions. Recently, Johnson & Borhan (1999) used the boundary
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integral technique to study the effects of surfactant on the motion and deformation of
finite liquid drops in Poiseuille flow through circular tubes. Gaver et al. (1996) used the
boundary element method to investigate bubble progression in a flexible airway while
Yap & Gaver (1998) used this technique to investigate the importance of surfactant
physicochemistry for an idealized surfactant under bulk-equilibrium conditions. They
predicted that surfactant uptake could significantly influence the mechanics of airway
reopening.

The hybrid BEM–finite difference techniques described above cannot simulate
the bulk-phase convection–diffusion transport dynamics of surfactant. However,
experiments have demonstrated that the bulk transport of pulmonary surfactants can
significantly influence the physicochemical hydrodynamic behaviour of the system
(Ghadiali & Gaver 2000). In a recent paper (Ghadiali, Halpern & Gaver 2001),
we have developed a computational model that is capable of simulating bulk
surfactant transport dynamics under non-equilibrium conditions. This model is
capable of simulating bulk-equilibrium and diffusion-limited conditions as well as
the coupled transport process that occur under mixed-kinetic conditions. In addition,
this computational model is able to simulate the nonlinear surfactant equations
of state expressed by pulmonary surfactants (Lipp et al. 1996; Taneva & Keough
1994).

The goal of the present study is to use this computational model to investigate
how various surfactant physicochemical properties, such as adsorption rate, can
influence the fluid dynamics of semi-infinite bubble progression in a rigid tube. First,
a set of dimensionless parameters that represent the relative magnitude of these
physicochemical properties is obtained by scaling the appropriate hydrodynamic,
surfactant transport and interfacial mechanics equations. An extensive parametric
study is conducted in which each parameter is varied independently to investigate the
influence of a given physicochemical property. Specifically, we seek solutions for
the interfacial geometry, concentration profiles and interfacial pressure drop as a
function of the dimensionless parameters. In addition, we calculate the interfacial sur-
face velocities and the bulk flow patterns that result from bubble motion. Analysis of
these simulations leads to a more complete understanding of the basic physicochemical
hydrodynamic interactions in this system. We also obtain an understanding of how
various bulk transport properties not considered heretofore can affect the mechanics
of pulmonary airway reopening. Knowledge of how these properties interact with
the fluid mechanical environment may lead to the development of more effective
pulmonary surfactant replacement therapies.

2. Model formulation
The theoretical model of semi-infinite bubble progression in a rigid axisymmetric

capillary tube with a radius R is demonstrated in figure 1. The displaced fluid, which
can contain surfactant, has a viscosity µ and density ρ. We consider the steady-state
movement of this bubble with a forward velocity U . The air–liquid interface is defined
at each point by a unit normal, n̂ = (nz, nr ), and a unit tangent, t̂ = (tz, tr ), vector. The
gas-phase viscosity is assumed to be negligible, and the finger width in the thin film
region is defined as Rf , and is found as part of the solution. The reference pressure
is the bubble pressure, P ∗

bub = 0. Surfactant molecules can exist either in the bulk
solution with concentration C∗ or adsorbed onto the interface with concentration Γ ∗.
The model is based on the basic governing equations for fluid mechanics, molecular
transport and interfacial dynamics.
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2.1. Surfactant transport equations

The governing equation for convection and diffusion of surfactant in the bulk solution
is

∂C∗

∂t∗ + (u∗ · ∇∗)C∗ = Dmol∇∗2

C∗. (2.1)

Here, an asterisk is used to denote dimensional variables, u∗ is the velocity vector and
Dmol is the bulk diffusion coefficient. The concentration of surfactant on the interface,
Γ ∗, is governed by a conservation equation derived by Stone (1990):

∂Γ ∗

∂t∗ + ∇∗
s · (Γ ∗u∗

s ) + Γ ∗(∇∗
s · n̂)(u∗ · n̂) = Dint∇∗2

s Γ ∗ + j ∗
n . (2.2)

Here ∇∗
s is a surface gradient operator, u∗

s is the surface velocity, Dint is the surface
diffusion coefficient, and j ∗

n is the mass flux to the interface from the bulk.
As stated above, the mass flux to the interface occurs in a two-step serial process.

The first step involves diffusion from the bulk. In this case j ∗
n is given by Fick’s Law,

j ∗
n = −Dmol(n̂ · ∇∗)C∗. (2.3)

The second step involves an adsorption/desorption process from the subsurface
to the interface. In this study we utilize Langmuir adsorption kinetics to determine the
form of j ∗

n . Specifically, the adsorption rate term is proportional to the sub-surface
concentration as well as the number of free sites, while the desorption rate is
proportional to the number of filled sites,

j ∗
n = ka

LC∗
s [Γ∞ − Γ ∗] − kd

LΓ ∗. (2.4)

The surface concentration when all sites are filled is the maximum monolayer packing
concentration, Γ∞, which equals Γsat . Continuity at the interface dictates a balance of
diffusive and sorptive fluxes,

ka
LC∗

s [Γ∞ − Γ ∗] − kd
LΓ ∗ = −Dmol(n̂ · ∇∗)C∗. (2.5)

This flux balance equation will be used as a boundary condition when solving the
bulk transport equation (2.1), while j ∗

n in the surface transport equation (2.2) will be
associated with the adsorptive/desorptive flux term, equation (2.4).

2.2. Langmuir equation of state

To determine the Langmuir equation of state that relates surface tension to sur-
face concentration, γ ∗(Γ ∗) we utilize an adsorption equilibrium relationship, i.e.
equation (2.4) with j ∗

n = 0,

Γ ∗

Γ∞
=

KLC∗
s

1 + KLC∗
s

, (2.6)

where KL = ka
L/kd

L. In order to determine γ ∗(Γ ∗) we also utilize the Gibb’s thermo-
dynamic relationship (Myers 1991),

dγ ∗ = −RT Γ ∗d(ln C∗
s ), (2.7)

which relates surface tension to the sub-surface and interfacial concentrations. Here,
R is the universal gas constant and T is the temperature. Equations (2.6) and (2.7)
can be used to obtain the Langmuir equation of state,

γ ∗(Γ ∗) = γeq + RT Γ∞ ln

(
Γ∞ − Γ ∗

Γ∞ − Γeq

)
. (2.8)
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Figure 2. Schematic of the fluid boundary and the location of the imposed
boundary conditions.

Here Γeq is the surface concentration that is in equilibrium with the far-field bulk
concentration, Co, and γeq is the associated equilibrium surface tension. Note that
equation (2.8) contains a logarithmic singularity as Γ ∗ → Γ∞ such that γ ∗ → −∞.
As demonstrated in other studies (Eggleton et al. 1999) as well as the present one,
the highly nonlinear behaviour of equation (2.8) near the singularity generates a large
mechanical response (i.e. large Marangoni stress) that ensures that Γ ∗<Γ∞. Therefore,
this singularity does not require special computational treatment.

2.3. Dimensionless governing equations and boundary conditions

We use the following scaling arguments to obtain dimensionless governing equations.

s∗ = Rs, r∗ = Rr, z∗ = Rz, u∗ = Uu,

C∗ = CoC, γ ∗ = γeqγ, Γ ∗ = Γ∞Γ, P ∗ =
γeq

R
Π.

}
(2.9)

Here P ∗ is the pressure, s is the arclength coordinate and Co is the far-downstream
bulk concentration. When inertial forces are negligible (Re = ρUR/µ � 1), the scaled
form of the Navier–Stokes equations reduces to the steady-state Stokes equations,

∇Π = Ca∇2u, ∇ · u = 0, (2.10)

where Ca = µU/γeq is the capillary number that relates viscous to surface tension
forces.

Steady-state boundary conditions on the domain shown in figure 2 are

∂uz

∂r
= 0, ur = 0 at z > 0, r = 0, (2.11)

u · n̂ = uznz + urnr = 0 at r = rm(z), (2.12)

σ f luid · n̂ = γ κ n̂ +
dγ

ds
t̂ at r = rm(z), (2.13)

uz = −1, ur = 0 as z → −∞, (2.14)

ur = 0, uz = −1 at r = 1, (2.15)

uz = −
[
2β2

f (r2 − 1) + 1
]
, ur = 0 as z → +∞. (2.16)

Here βf = Rf /R is the dimensionless width of the air bubble in the thin film. Equa-
tion (2.11) specifies symmetry at the centreline. The kinematic boundary conditions
((2.12), (2.14), (2.15) and (2.16)) are stated in terms of the bubble-fixed reference
frame at steady state. Equation (2.12) specifies no penetration at the interface while
(2.15) specifies no slip at the tube wall. Equation (2.14) imposes a plug-flow boundary
condition in the static thin film while (2.16) imposes Poiseuille flow far downstream.
Note that (2.16) satisfies a global conservation of mass relationship. Finally, (2.13)
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represents the interfacial stress balance where σ f luid = −Π I +Ca(∇u + ∇Tu) rep-
resents the fluid stress tensor and σ air = 0.

Since the interface is a free surface, a surface geometry must be determined that
simultaneously satisfies boundary conditions for velocity (2.13) and stress (2.14). To
do so, the stress balance (2.13) is imposed while the interface shape is iterated until
(2.12) is satisfied.

Under steady-state conditions, the scaled form of (2.1) yields

(u · ∇)C = Pe−1∇2C. (2.17)

Here Pe = UR/Dmol is the bulk Péclet number which relates convection rates to
diffusion rates. The following boundary conditions complete the bulk transport
formulation:

∂C

∂r
= 0 at r = 0, (2.18)

(n̂ · ∇)C = −PeStaCs(1 − Γ ) + PeStaλΓ at r = rm(z), (2.19)

∂C

∂z
= 0 as z → −∞, (2.20)

∂C

∂r
= 0 at r = 1, (2.21)

C = 1 as z → +∞. (2.22)

Here λ = Γ∞/CoR is the dimensionless adsorption depth and the adsorption param-
eters (Sta and Std) are defined below. The adsorption depth is a length scale related
to the fluid thickness that contains sufficient surfactant molecules to obtain an
interfacial concentration of Γ∞. The boundary conditions specify symmetry at the
centreline (2.18), no axial variation in the static thin film (2.20), no surfactant flux
into the tube wall (2.21), and a constant far-downstream bulk concentration (2.22).
The interfacial boundary condition (2.19) specifies continuity between bulk diffusive
and adsorptive/desorptive fluxes at the interface. Note that (2.19) is the dimensionless
form of (2.5) using Langmuir kinetics for the adsorptive flux term, f (C∗

s , Γ
∗).

Under steady-state conditions u · n̂ = 0, and the scaled form of (2.2) yields

∇s · (Γ us) = Pe−1
s ∇2

sΓ +
Sta

λ
Cs(1 − Γ ) − StdΓ, (2.23)

where we have used (2.4) for j ∗
n . Here Pes = UR/Dint is the surface Péclet number

which relates surface convection rates to surface diffusion rates, Sta = kaΓ∞/U is the
adsorption Stanton number that relates adsorption rates to surface convection rates,
and Std = kdR/U is the desorption Stanton number which relates desorption rates to
surface convection rates. Note that Stλ = Sta/λ is the effective adsorption parameter
which relates adsorption rates to interfacial creation rates.

Finally, the following boundary conditions complete the transport of surfactant on
the interface:

∂Γ

∂s
= 0 at s = 0, (2.24)

∂Γ

∂s
= 0 as s→∞. (2.25)

These Neumann boundary conditions specify symmetry at the centreline (2.24) and
no variation in the static thin film (2.25).
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A scaling analysis of (2.8) yields the dimensionless Langmuir equation of state,

γ (Γ ) = 1 + El ln
1 − Γ

1 − Γ̃ eq

(2.26)

Here El = RT Γ∞/γeq is the elasticity number, which is a measure of a surfactant’s

ability to modify the interfacial surface tension and Γ̃ eq = Γeq/Γ∞ is the dimensionless
equilibrium surface tension where Γeq is in equilibrium with the far-field bulk

concentration Co. Note that (2.6) can be used to express Γ̃ eq in terms of Stλ and Std .

Γ̃ eq =
Stλ

Stλ + Std
. (2.27)

Although other investigators (Ratulowski & Chang 1990) have identified the measure
of a surfactant’s strength with the Marangoni number, Ma, we follow a more
traditional definition (Stebe & Barthès-Biesel 1995) such that Ma is related to the
ratio of Marangoni to viscous stresses, i.e. Ma = El/Ca = RT Γ∞/µU .

2.4. Solution methods

The details of the solution technique are given in Ghadiali et al. (2001). Briefly,
the boundary element method (BEM) is used to solve the fluid mechanics, the dual
reciprocity boundary element method (DRBEM) is used to solve the transport of
surfactant in the bulk, and a finite difference scheme (FDM) is used to solve the
interfacial transport of surfactant. Note that under general conditions, the governing
surfactant transport equations are coupled to the fluid mechanics via the stress balance
at the interface (2.13) and the equation of state (2.26). Specifically, the velocity field,
which is used to determine interfacial kinematics, depends on the stress balance at
the interface. For a given γ (s) the steady-state interfacial shape can be obtained
by moving the interface according to kinematic relationships until the bubble shape
does not change with time. Once this new shape is known, the fluid velocities, which
will be different from the velocities associated with the previous shape, can be used
to solve the surfactant transport equations for Γ (s) and thus γ (s). This new γ (s),
which alters the interfacial stress balance, will result in an altered flow field and
therefore a new steady-state shape. Therefore, an iterative scheme in conjunction with
a relaxation technique, described in detail by Ghadiali et al. (2001) is used to obtain
a converged steady-state solution to the nonlinear hydrodynamic and surfactant
transport governing equations. As a result, several system characteristics (including
bubble tip pressure drop, Πtip, tip curvature, κtip, tip surface tension, γtip, and finger
width, βf ) can be determined for a given set of dimensionless parameters.

2.5. Accuracy calculation

The thin-film boundary conditions for the bulk and surface transport problems,
equations (2.20) and (2.25), are defined at an infinite axial distance from the bubble
tip. If the computational domain in the thin film is truncated prematurely, the
application of these boundary conditions will result in an inaccurate solution. To
assess solution accuracy we follow Ghadiali et al. (2001) and formulate an overall
mass balance between regions far upstream and downstream of the tip. This mass
balance can be expressed as

Γ̃ film =
(1 − C̃film)

(
1 − β2

f

)
2λβf

, (2.28)

where C̃film and Γ̃ film have constant values in the thin film. In addition, the thin-film
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bulk and interfacial concentrations are in equilibrium and can be related to the
dimensionless form of equation (2.6):

Γ̃ film =
StλC̃film

StλC̃film + Std
. (2.29)

As a result, C̃film can be determined from equations (2.28) and (2.29) for given
dimensionless parameter values. The relative error between the thin-film concentration
obtained from the numerical simulation and the analytical C̃film value is a measure of
solution accuracy. This error was maintain at < 1% by either extending the solution
domain or increasing the number of nodes in the BEM/DRBEM model.

2.6. Bubble-tip pressure drop calculation

Although the majority of the geometrical and mechanical properties (κtip, βf , and γtip)
are calculated as part of the iteration solution, the calculation of Πtip requires some
explanation. To calculate Πtip we follow the technique presented in Martinez (1987).
The normal stress component at the interface, n̂ · (σ f luid · n̂), which according to the
interfacial stress balance (2.13) is equal to γ κ , can be expressed in terms of the normal
velocity at the interface, un:

n̂ · (σ f luid · n̂) = −Πf luid + 2Ca
∂un

∂n
= γ κ. (2.30)

Conservation of mass in an axisymmetric normal–tangential (n–s) coordinate system
indicates that

∂un

∂n
= −1

r

∂(rus)

∂s
. (2.31)

At the bubble tip, where r = 0, the limit of equation (2.31) can be used with equa-
tion (2.30) to determine the pressure drop across the interface (Πtip = Πair − Πf luid),

Πtip = −Πf luid = γtipκtip + 4Ca
∂us

∂s
, (2.32)

where Πf luid is the fluid pressure at the tip and Πair = 0 is the reference pressure.
Therefore, Πtip has a surface tension component (γtipκtip) and a viscous component
(4Ca dus/ds).

2.7. Fixed vs. variable equilibrium point calculations

In § 3.4 we conduct a ‘variable equilibrium point’ study in which we allow the change
in Γ̃ eq to occur with changes in the dimensionless parameters. From (2.27) the

equilibrium point, Γ̃ eq = Γeq/Γ∞, is a function of the adsorption depth parameter
(λ), the adsorption Stanton number (Sta), and the desorption Stanton number (Std).
This change in Γ̃ eq with the dimensionless parameters can be explained physically.
For example, increasing the sorption rate Sta at a fixed Co increases the quantity
of surfactant adsorbed onto the interface. Therefore, Γ̃ eq will increase with Sta . To

understand how this change in Γ̃ eq affects the equation of state, consider figure 3

where El = 0.5 and Γ̃ eq = 0.2, 0.5, 0.8. As Γ̃ eq is increased, the equations of state
shift upward and the equilibrium point (i.e. where γ = γ ∗/γeq = 1) shifts to the right

and moves closer to the singularity. Thus, the increase in Γ̃ eq results in an increase in

the slope of the equation of state, dγ /dΓ , near Γ̃ eq . So, by allowing Γ̃ eq to change we
are effectively changing the strength of the surfactant as a function of the adsorption
depth and/or the sorption rates.
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Figure 3. Dimensionless Langmuir equations of state at El = 0.5 and Γeq = 0.2, 0.5, 0.8. This
figure demonstrates the change in relative surfactant strength (dγ /dΓ at γ = 1) that can occur
due to changes in the equilibrium point.

Dimensionless parameter Definition Description

Capillary number Ca = µU/γeq Relates viscous to surface tension forces
Bulk Péclet number Pe = UR/Dmol Relates bulk convection rates to diffusion rates
Surface Péclet number Pes = UR/Dint Relates surface convection rates to diffusion rates
Adsorption Stanton number Sta = kaΓ∞/U Relates adsorption rates to surface convection rates
Desorption Stanton number Std = kdR/U Relates desorption rates to surface convection rates
Adsorption depth λ = Γ∞/CoR Depth of fluid required to bring Γ to Γ∞
Elasticity number El = RT Γ∞/γeq Ability of surfactant to modify the surface tension

Table 1. Independent dimensionless physicochemical hydrodynamics parameters.

In contrast, we wish to gain a further understanding of this system by independently
examining the effects of λ, Sta , and Std without altering the surfactant strength. This
can be accomplished by fixing the equilibrium point, Γ̃ eq , and thus prescribing

the equation of state. In order to maintain a constant Γ̃ eq , two of the independent
parameters (λ, Sta , and Std) must be varied simultaneously. For example, if we increase
the adsorption rate (Sta), equation (2.27) indicates that we must concurrently increase
the desorption rate (Std) to maintain a fixed equilibrium point. Simulations with a
constant Γ̃ eq are conducted in § 3.3 and § 3.4.2 and are termed ‘fixed equilibrium
point’ studies. We will demonstrate that ‘fixed equilibrium’ and ‘variable equili-
brium’ point simulations demonstrate strikingly different behaviour.

3. Results
The scaling analysis presented above yields the physicochemical hydrodynamic

dimensionless parameters tabulated in table 1. Note that in addition to these
independent parameters there are two additional dependent parameters: the effective
adsorption parameter, Stλ = Sta/λ and the dimensionless equilibrium point, Γ̃ eq . The
goal of this paper is to vary these parameters separately to understand how different
physicochemical properties can affect the mechanical properties of the system.
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For each parameter variation study, the following set of parameters is used as the
base conditions: Ca = 0.15, El = 0.5, Sta = 1, Std = 5, λ = 0.1, Pe = 10, Pes =
103. The bulk concentration field for this base state is given by figure 12(b). At
these parameter values, the transport of the surfactant due to bulk transport and
surface adsorption/desorption processes are both O(1). As a result, the equations
governing bulk and surface transport cannot be simplified and the full set of non-
linear governing equations must be solved. As shown below, the base parameter case
as well as a large set of parameter variation studies can be accurately simulated with
the current theoretical model. Therefore, this model has distinct advantages over
previous models that can only simulate bulk-equilibrium or diffusion-limited condi-
tions.

In exploring a given parameter, we provide several sets of multi-part figures to
demonstrate the response of the system. For each parameter, first we provide a four-
part figure that describes the variation of the following basic characteristics as a
function of the parameter:

(a) dimensionless interfacial pressure drop at the tip, Πtip = P ∗
tip/(γeq/R);

(b) dimensionless bubble width, βf = Rf /R,

(c) surface tension component of Πtip, γ
∗
tipκtip,

(d) viscous component of Πtip, 4Ca∗dus/dstip.
Then, to explain the geometric and surface transport responses, an additional four-
part figure is provided to demonstrate the variation in the following dimensionless
surface variables:

(a) surface velocity, us = u∗
s /U ;

(b) surface concentration, Γ = Γ ∗/Γ∞;
(c) surface tension, γ = γ ∗/γeq ,
(d) subsurface surfactant concentration, Cs = C∗

s /Co.
Through examination of these data will explain the relationships that develop in this
complex system.

3.1. Influence of Marangoni stress

In this section we investigate the influence of the Marangoni stress parameter (Ma).
Recall that Ma = El/Ca = RT Γ∞/µU is a ratio of Marangoni to viscous forces.
We alter this parameter by varying either the capillary number (Ca), which is a
ratio of viscous to surface tension forces, or by varying the elasticity number (El ),
which represents the ability of adsorbed surfactant to modify the interfacial surface
tension.

3.1.1. Variation of Ca

In figure 4 we present the variation of the dimensionless (a) bubble tip pressure
drop, (b) finger width, (c) surface tension component, and (d ) viscous component
as a function of Ca for fixed El values. Note that we have used two values for
El other than the base parameter value of El = 0.5: El = 0 to simulate a passive
surfactant that does not modify the surface tension (also a surfactant-free system)
and El = 1.0 to simulate a more active surfactant. In both the passive and active
surfactant systems, Πtip increases with Ca. As El is increased, the Πtip (Ca) curves
shift upwards due primarily to an increase in the surface tension component,
γtipκtip. Although γtip exhibits a non-monotonic relationship with Ca at large El (see
figure 5c and description below), the surface tension component of Πtip (γtipκtip in
figure 4c) increases monotonically with Ca . The βf data at El =0 (figure 4b) can
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be compared with previous studies to further validate the code. First, for Ca < 0.1
the current results are within 1% of the low-Ca measurements of Fairbrother &
Stubbs (1935) (open circles in figure 4b). In addition, the βf value at Ca ∼ 2 (i.e.
0.67) is consistent with the high-Ca asymptote measured by Taylor (1961). Therefore,
the current computational method predicts the well-established low- and high-Ca
measurements for a surfactant-free system.

Figure 5 demonstrates how the dimensionless (a) surface velocity, (b) surface
concentration, (c) surface tension, and (d ) sub-surface concentration along the
interface (defined by the arclength parameter, s) vary as a function of Ca for El =0.5.

Figure 5(c) indicates that for decreasing Ca , the tip surface tension, γtip, initially
decreases to ∼ 1.01 and then increases to ∼ 1.10. To understand this non-monotonic
relationship, consider the distribution of Γ and Cs demonstrated in figure 5(b, d ).
As Ca decreases, Cs in the thin film decreases due to transport limitations within the
bulk phase. This occurs because the film becomes exceedingly thin (1−βf → 0) as Ca
is reduced and this leads to a very small volume of bulk surfactant being convected
into the thin-film region. This depletion of surfactant in the thin film region as βf

increases is also consistent with the mass balance relationships developed in § 2.5.
This reduction in Cs results in reduced surfactant adsorption and thus a reduction
in the thin-film surface concentration, Γf ilm. In fact, as the film thickness becomes
of similar magnitude to the adsorption thickness (λ), the bulk surfactant delivered
to the thin-film region is too small for the interface to reach Γ̃ eq , as discussed in
Ghadiali et al. (2001). So, at small Ca the transport from the bulk to the interface
in the thin-film region results in very small values of Γfilm. In contrast, Γ near the
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Figure 5. The influence of the capillary number (Ca) on the dimensionless (a) surface velocity,
(b) surface concentration, (c) surface tension, and (d ) sub-surface concentration along the
interface for Ca = 1.0, 0.15, 0.015 (El = 0.5, Sta = 1, Std = 5, λ = 0.1,Pe = 10,Pes = 103).

bubble tip (Γtip) deviates from Γfilm due to surface convection patterns near the tip.
As Ca is reduced from 1.0 to 0.15 a recirculation zone develops at the bubble
tip. This can be seen by the inset of figure 5(a), where us becomes negative in the
tip region at Ca = 0.15. As a result of retrograde surface convection, Γtip increases
as Ca decreases over the range 0.15 � Ca � 1.0 as shown in figure 5(b). However
at sufficiently low Ca , Ma = El/Ca becomes large enough that Marangoni stresses
move the recirculation region away from the interface tip (us is no longer negative in
the tip region) and the transport limitations in the thin film decrease Γfilm significantly.
As a result, Γtip decreases as Ca decreases over the range 0.015 � Ca � 0.15. Since
γ is inversely related to Γ, γtip depicted figure 5(c) exhibits the opposite behaviour,
where γtip initially decreases and then increases as Ca is reduced.
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Figure 6 shows the flow field surrounding the semi-infinite air bubble for large
(Ca = 1.0) and small (Ca = 0.015) capillary numbers. The streamlines are drawn
in a bubble-tip reference frame. At large Ca , the film thickness is relatively large
(small βf ) and the fluid flows around the bubble unidirectionally. However, at small
Ca the upstream fluid thickness becomes very small (1 − βf → 0), so the fluid
approaching the bubble must change direction, forming a bulk recirculation profile.
Although this recirculating flow field exists in the bulk, figure 5(a) indicates that for
Ca = 0.015 and El =0.5 the surface velocities are unidirectional (i.e. all positive us).
As discussed in detail in § 3.1.2, Marangoni stresses (which are relatively large in
this case, Ma = El/Ca = 33.3) rigidify the interface and move the recirculating flow
pattern away from the interface. As a result, the recirculating flow is confined to the
bulk.

3.1.2. Variation of El

Figure 7 demonstrates the variation in system variables as a function of El for a fixed
Ca = 0.15. Figure 7(a) demonstrates a monotonic increase in Πtip with increasing El ,
primarily due to an increase in the surface tension component, γtipκtip. In addition, as
El increases, the viscous component of Πtip (4 Ca dus/ds|tip) also increases (figure 7d )
due to an increase in the velocity gradient at the tip, dus/ds|tip (see figure 8a and
corresponding description below). Note that the dotted horizontal lines in figure 7
indicate the equilibrium values that would be observed if γ = γeq uniformly. As
El → 0, surfactants do not modify the surface tension and thus γ is constant and all
system variables approach equilibrium values.

Figure 8 demonstrates the variation in the surface variables as a function of
interfacial position for El = 10−3, 0.49, 2.05. As El increases, the magnitude of dγ /ds

near the bubble tip increases (figure 8c) even though dΓ/ds decreases (figure 8b).
Therefore, at large El the Marangoni stress, τM , drives the bulk recirculating flow
pattern away from the interface (see figure 9 for details). As a result, the negative
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us values observed at low El are eliminated and the slope (dus/ds|tip) increases with
increasing El (figure 8a).

The surface tension profiles shown in figure 8(c) can also be used to understand
the non-monotonic behaviour in βf shown in figure 7(b). βf is determined by the
magnitude of two effects – the Marangoni stress (τM ), and the average thin film
surface tension (γf ilm). Recall that τM is directed from regions of low γ to regions
of high γ . Therefore, as shown in figure 8(c), τM is predominately directed from the
tip to the thin film. As a result, fluid is driven into the thin film causing the film to
thicken (reduction in βf ). This decrease in βf with increasing El is initially observed
at low El values (figure 7b). However, a further increase in El results in a larger γfilm

(figure 8c) and thus a decrease in the thin-film capillary number, Cafilm = µU/γfilm.
The increase in βf (film thinning) at larger El is thus due to a relative decrease in
viscous to surface tension forces (figure 7b).

Figure 9 demonstrates the influence of τM on the bulk recirculating flow field.
At small El(= 10−3), the interface is mobile and does not support a significant
Marangoni stress. Under these conditions, the bulk recirculating flow is in contact
with the interface and the surface velocity (us) can take on negative values near
the tip (figure 8a). As El increases, surface tension gradients generate a τM that
opposes the basis flow field and begins to rigidify the interface. At large El (= 5.13),
τM has forced the bulk recirculating flow pattern away from the interface such that the
surface velocities are all positive. This change in the bulk flow field will influence the
quantity of surfactant that can be transported to the interface via bulk convection.
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3.2. Influence of bulk diffusion

To investigate the influence of the bulk diffusion rate we independently varied Pe while
holding all other transport parameters constant under low and high concentrations
(λ= 0.1 and λ= 0.01, respectively). Figure 10 shows the variation in system variables
as a function of Pe. For λ= 0.1, Πtip exhibits a non-monotonic response to an increase
in Pe where, Πtip decreases slightly at small Pe before increasing at larger Pe. As
demonstrated in figure 10(c, d ), the change in the viscous component of Πtip is
negligible compared to the change in the surface tension component, γtipκtip.

Figure 10 also demonstrates the variation in system variables with Pe at a large bulk
concentration (λ= 0.01). For this simulation we have fixed the effective adsorption
rate (Stλ =10) by setting Sta = 0.1 such that the equilibrium point is fixed (see § 3.4.2
for details). λ � 1 corresponds to a large bulk concentration, where the transport of
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surfactant in the bulk is rapid, leading to a uniform bulk concentration that is nearly
equal to the far-field value, Co. Therefore, the large bulk concentration gradients that
develop at large Pe for λ= 0.1 (see figure 12) are not generated at λ= 0.01. As a
result, the system variables, including Πtip, are significantly less sensitive to changes
in Pe. In addition, at λ=0.1, the bulk transport limitation (Cs 	= 1) prevents the
system variables from approaching the equilibrium values as indicated in figure 10.
As λ decreases, the bulk transport limitation is reduced (Cs → 1), and thus the system
variables are closer to the equilibrium values. However, even at λ= 0.01, the moderate
effective adsorption rate, Stλ =10, prevents the system variables from obtaining the
equilibrium values that would occur if γ = γeq uniformly.

Figure 11 shows the variation in the surface variables as a function of interfacial
position for Pe =1.12, 10.0, 107 and λ= 0.1. Consider the distribution of Cs shown
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in figure 11(d ). Although the thin film concentration, Cs,f ilm, is largely independent
of Pe, large concentration gradients develop in the bulk fluid as Pe increases, which
alters the magnitude of Cs near the bubble tip (see figure 12). At low Pe (Pe = 1.12),
the recirculating flow pattern (see inset in figure 11a) convects surfactant to the tip
and results in an increase in the tip value of Cs over that in the thin film. However, as
Pe increases further (Pe = 107), diffusion limitations lower the average Cs value while
gradients in Γ (and thus γ ) reduce the recirculating flow pattern at the interface
and thereby further reduce Cs near the tip. Since sorption of Γ is governed by
the local Cs , Γtip (and therefore γtip) also displays this non-monotonic behaviour
(figure 11b, c).

The surface tension profile (figure 11c) can also be used to explain the non-
monotonic behaviour of βf (figure 10b). For Pe = 10, the magnitude of the Marangoni
stress, τM , is directed toward the thin film and results in film thickening. However,
when Pe > 10, the surfactant distribution creates a bi-directional Marangoni stress
field where τM near the tip is directed towards the thin film while τM near the thin
film is directed towards the tip. So, at large Pe the Marangoni stress in the thin-film
region drives fluid out of the thin film and results in a film thinning response for
Pe > 10.

Figure 12 shows the bulk concentration field surrounding the semi-infinite bubble
at Pe = 1.12, 10.0, 107. Recall that we have specified a continuity between the bulk
diffusive and the adsorptive/desorptive fluxes at the interface (2.19). For an O(1)
adsorptive/desorptive flux, equation (2.19) indicates that at low Pe (or high Dmol) the
concentration gradients near the interface dC/dn̂ must be small, as demonstrated in
figure 12(a) for Pe = 1.12. As Pe increases, dC/dn̂ becomes larger as convection begins
to dominate transport. As a result, dC/dn̂ increases as demonstrated in figure 12(c)
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for Pe =107. At very large Pe, the generation of a very large dC/dn̂ results in sub-
surface concentrations within the transition region that are less than the thin-film
value (figure 11d ), causing an increase in γ in the transition region. As discussed
above, this results in a film-thinning response.

3.3. Influence of adsorption/desorption kinetics

In order to isolate the effect of surfactant sorption properties, we conducted a fixed
equilibrium point study that maintains a fixed surfactant strength by varying Sta and
Std simultaneously so that Γ̃ eq remains constant (see § 2.7). As such, every variation

in Sta is accompanied by a change in Std so that Std = Stλ(1 − Γ̃ eq)/Γ̃ eq . Under
these conditions, an increase or decrease in Sta can be interpreted as an increase
or decrease in the surfactant sorption properties at a fixed surfactant strength or
equilibrium point.

Figure 13 shows the variation in system variables as a function of Sta for a constant
Γ̃ eq . As Sta decreases, Πtip increases monotonically. This increase in Πtip is due to
an increase in surface tension component (figure 13c) as well as a more modest
increase in the viscous component (figure 13d ). As Sta increases for-fixed Γ̃ eq, Γ

equilibrates with the local Cs . However, as shown in figure 14(d ), bulk transport
limitation still exists (Cs < 1) since λ=0.1. As a result, the system variables do not
approach equilibrium values at large Sta .

To understand the increase in the surface tension and viscous components that
occur with a reduction Sta , consider the variation in the surface variables as a
function of interfacial position for Sta = 0.036, 0.12, 99 (figure 14). At very large Sta ,
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the surface concentration, Γ , is in equilibrium with the sub-surface concentration,
Cs . As Sta decreases, surface convection depletes the surfactant on the interface more
rapidly than adsorption can replenish the interface. As a result, at low Sta significant
non-equilibrium surface concentrations and tensions can develop in the bubble-tip
and thin-film regions, as shown in figure 14(b, c). Note that the computational domain
is longer than that shown in figure 14 so that the equilibrium specified in § 2.6 is
satisfied at small values of Sta . As Sta decreases, the depletion of surfactant at the
bubble tip results in an increase in γtip and thus an increase in γtipκtip. In addition, as
Sta decreases, the non-uniformity of γ near the bubble tip increases the magnitude
of the τM near the bubble tip. This increase in τM rigidifies the interface and removes
the recirculating flow pattern from the interface as demonstrated in figure 14(a). As a
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Figure 15. The influence of λ at a variable Γ̃ eq on the dimensionless (a) bubble tip
pressure, (b) finger width, (c) surface tension component, and (d ) viscous component.
(Γ̃ eq = Stλ/(Stλ + Std ), Ca = 0.15, El = 0.5, Sta = 1, Std = 5,Pe = 10,Pes = 103). Dotted
horizontal lines indicate equilibrium values when γ = γeq uniformly.

result, the magnitude of dus/ds|tip, and thus the viscous component of Πtip, increases
as Sta decreases. Finally, an elevated γ in the transition region generates a large
Marangoni stress that is directed away from the thin film and thus results in film
thinning (increase in βf ) at low Sta (figure 13b).

3.4. Influence of adsorption depth

3.4.1. Variation of λ – variable equilibrium point

In this section, the influence of the adsorption depth is investigated by varying λ

and allowing Γ̃ eq to vary simultaneously. This analysis is consistent with modification
of the bulk concentration, Co with λ = Γ∞/(CoR) and Stλ = kaCoR/U . Since Stλ
increases with Co, an increase in Γ̃ eq results. This, in turn, leads to amplification of

the Marangoni effect because the slope of the equation of state is a function of Γ̃ eq .
As demonstrated in figure 15(a), Πtip exhibits an interesting non-monotonic be-

haviour as a function of λ. At large λ, concentrations are small, which causes
Γ̃ eq � 1. This results in very small Marangoni stresses because dγ /dΓ � 1 (figure 3).
Therefore, as λ becomes very large, Co → 0, Γ → 0 and γ → γclean. As a result,
the system variables approach equilibrium values at large λ. As λ decreases due
to an increase in Co, the dimensionless pressure drop Πtip = P ∗

tip/(γ
∗
eq/R) initially

increases before decreasing slightly at very small λ. This non-monotonic response is
due primarily to the surface tension component, γtipκtip (figure 15c), which results from
the non-monotonic behaviour of γtip. The viscous component exhibits a similar non-
monotonic behaviour (figure 15d ). It should be noted that although the dimensionless
pressure, Πtip, increases with decreasing λ, the dimensional pressure, P ∗

tip, decreases
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Std = 5,Pe = 10,Pes = 103.

with decreasing λ because more surfactant is adsorbed onto the interface as Co

increases (reducing γ ∗
eq).

To understand the variations in surface tension and viscous components of Πtip,
we consider the concentration and surface tension profiles shown in figure 16 for
λ = 1.03 × 10−3, 0.1, 9.70. At large λ, Stλ is very small and only a small quantity of
surfactant can adsorb onto the interface. As a result, Γ̃ eq is small and Γ � 1 for
large λ as shown in figure 16(b). Under these conditions, the dimensionless surface



188 S. N. Ghadiali and D. P. Gaver

tension, figure 16(c), is nearly uniform and γ ≈ γeq . As λ decreases, the magnitude of
dγ /dΓ increases due to an increase in Γ̃ eq (see figure 3). Hence, small variations in
Γ near Γ̃ eq ∼ 1 produce large surface tension deviations from equilibriu!m as well
as larger surface tension gradients. As λ decreases to λ = 0.1, γtip increases slightly
and the Marangoni stress (τM ) near the bubble tip also increases (figure 16c). The
increase in γtip results in an initial increase in the surface tension component of Πtip,
while the increase in τM increases the viscous component via an increase in dus/ds|tip
(figure 16a). As λ is decreased further to 1.03 × 10−3, the concurrent increase in
Stλ reduces the variations in Γ since the system approaches equilibrium at large
adsorption rates. However, this decrease in λ is accompanied by an increase in Γ̃ eq

such that at very low λ, Γ̃ eq → 1. Under these conditions, the singularity in the
equation of state increases dγ /dΓ so that significant variations in γ from γeq occur
that result in responses that are far from equilibrium even though sorption rates are
very rapid (see figure 3). As we will see below, this is very different from the response
of the fixed-equilibrium system. It is interesting to note that the recirculating pattern is
not completely removed from the interface (figure 16a) even for λ � 1, and therefore
Γ can exceed Γ̃ eq slightly at the tip (see inset to figure 16b where Γ̃ eq = 0.9948 for
λ = 1.03 × 10−3). Therefore, for λ = 1.03 × 10−3, γtip can be reduced to γtip < 1 while
the rest of the transition region exhibits γ > 1. This reduction in γtip decreases γtipκtip

and thus reduces Πtip at very low λ.
The surface tension profiles (figure 16c) can also be used to understand the variation

in βf (figure 15b). As λ initially decreases, τM near the bubble tip is directed towards
the thin film and results in film thickening (decrease in βf ). However, at very low
λ the τM near the thin film (which is directed away from the thin film) begins to
dominate and results in film thinning (increase in βf ).

3.4.2. Variation of λ – fixed equilibrium point

In this section we wish to investigate the influence of the adsorption depth for a fixed
Γ̃ eq value. To hold Γ̃ eq constant, variations in λ are accompanied by modifications

in Sta such that Sta = λStdΓ̃ eq/(1 − Γ̃ eq). Under these conditions, variations in λ are
investigated at a fixed effective adsorption rate Stλ = Sta/λ so that dγ /dΓ at the
equilibrium point is constant.

Figure 17 shows the variation in system variables as a function of λ for a constant
Γ̃ eq . As λ increases, Πtip increases monotonically. This increase in Πtip is almost
completely due to an increase the surface tension component (figure 17c). The
viscous component exhibits a slightly non-monotonic behaviour (figure 17d ), and
the magnitude of this variation is significantly less that the surface tension component.
As λ → 0 for fixed Γ̃ eq , the bulk transport barrier is eliminated (Cs = 1) as shown in
figure 18(d ). However, the system remains adsorption-limited due to the fixed effective
adsorption rate. As a result, the system variables do not reach their equilibrium values
even at low λ.

To understand the increase in the surface tension component of Πtip (figure 17c),
consider the Γ and γ profiles for λ = 1.03 × 10−3, 0.99, 9.70 shown in figure 18. As
λ increases, a significant decrease in Γ occurs along the entire interface. However,
this reduction is far less significant than in the variable-equilibrium case (figure 16b)
because of the simultaneous modification of the sorption rates that occur in this
fixed-equilibrium study, holding Γ̃ eq constant. So, global variation of Γ is far less

pronounced than when Γ̃ eq is allowed to vary (see § 3.4.1). Nevertheless, variation of
Γ (figure 18b) has a significant impact on γ resulting in large Marangoni stresses at
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the tip (Figure 18c) that rigidify the interface and remove recirculation from the tip
(figure 18a , inset).

The surface tension profile in figure 18(c) also explains the non-monotonic behav-
iour of βf demonstrated in figure 17(b). For small λ, the Marangoni stress near the
bubble tip is directed towards the thin film and results in film thickening (reduction
of βf ). However, at large λ the thin-film surface tension increases substantially. This
increases the thin-film capillary number and thus results in film thinning (increase in
βf ) at large λ (figure 17b).

3.4.3. Comparison between variable-equilibrium and fixed-eqiibrium behaviour

The behaviour described in § 3.4.1 and § 3.4.2 is strikingly different. For example,
as λ increases in the variable-equilibrium case (equivalent to decreasing Co), the
system approaches the equilibrium response for a system where Marangoni stresses
are non-existent. In contrast, near-equilibrium behaviour occurs as λ is decreased in
the fixed-equilibrium studies. This difference in behaviour occurs due to the variation
of dγ /dΓ that exists in the variable-equilibrium studies and the variation in sorption
rates necessary to maintain Γ̃ eq in the fixed-equilibrium case.

The decrease in Γ with increasing λ in the variable-equilibrium-point system
(figure 16b) is primarily due to the concurrent decrease in Γ̃ eq . In contrast, the

decrease in Γ in the fixed-equilibrium-point system (figure 18b), where Γ̃ eq is constant,
is due to a decrease in Cs along the entire interface (figure 18d ) as λ increases. Note
that the thin-film value of Cs decreases with increasing λ in both the variable- and
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fixed-equilibrium-point systems (figures 16d and 18d ), as predicted by mass bal-
ance analysis. However, since Γ̃ eq is held fixed in the fixed-equilibrium cases, far
more surfactant is adsorbed to the interface, and thus the bulk concentrations are
much lower than in the variable-equilibrium investigations (compare figure 16d and
figure 18d ).

The depletion of surfactant from the bulk is clearly evident in figure 19, which shows
the bulk concentration field surrounding the semi-infinite bubble for λ = 1.03 × 10−3,
0.1, 9.07 at a fixed Γ̃ eq . At very low λ, the bulk concentration is nearly uniform and
equal to the far-downstream value (C = 1). Under these conditions the system can be
considered to be in bulk equilibrium. However, for large λ the surfactant in the thin
film, Γfilm, is approximately non-existent because adsorption of surfactant is sufficient
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to deplete the bulk of surfactant near the interface (figure 19c). As a result, very large
concentration gradients develop in the bulk fluid. Under these conditions, Cs can be
significantly less than the far-downstream value. Therefore at large λ, the transport
of surfactant to the interface is limited by bulk transport processes.

4. Discussion
This study has examined the relationships between the physicochemical behaviour

of surfactant and the behaviour of a steadily migrating semi-infinite bubble in a
capillary tube. The behaviour of the system depends upon the macroscopic balances
given in § 2.5 in concert with the surface tension of the transition region with respect
to the thin film.

The analysis of § 2.5 shows that as the bulk concentration increases, λ decreases and
C̃film increases. Thus larger bulk concentrations lead to reduced bulk concentration
depletion in the thin film. Any depletion of surfactant from the thin film causes a rise
in the surface tension to values greater than the equilibrium tension, γeq . The direction
of the Marangoni stress depends on the surface tension in the transition region that
exists between the tip and thin film – if the surface tension in the transition region
is smaller than in the film, the film thickness increases and vice versa. However,
the surface tension in the transition region is determined by surface convection and
sorption kinetics.

Recall that in the absence of surfactant at small Ca a stagnation ring sweeps
surfactant towards the tip and thin film (figure 6b). If surfactant kinetic exchange is
slow (small Sta and Std) or diffusive transport is slow (large Pe), the surface convection
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drives surfactant out of the transition region into the thin film more rapidly than
it can be replenished by sorption or diffusion. Consequently, the surface tension is
higher in the transition region than in the film (see figure 11c), and the resulting
Marangoni stress thins the film region. This behaviour is evident in figures 10(b) and
11(c) (at high Pe) and figures 13(b) and 14(c) (at low Sta).

In contrast, if kinetic or diffusive exchange is rapid (large Sta and Std , small Pe),
the transition region does not become depleted of surfactant, and the surface tension
in the transition region is smaller than in the thin film (see figure 14c at large Sta).
This drives flow to the thin film, and results in film thickening, as is demonstrated in
figure 13(b) at large Sta . These observations are true at small Ca; however, at larger
Ca the film is less depleted of surfactant because βf increases. Consequently, the
surface tension in the thin film decreases with increasing Ca , driving a Marangoni
stress from the film to the transition region and modestly thinning the film (figures 4b
and 5c).

Finally, the surfactant strength plays a role through the elasticity parameter, El.
As El increases, the surface concentration is held more uniform because small
concentration differences create large Marangoni stresses (see figure 8b, c) that in
turn removes the recirculation region. The surface concentration is thus largely set
by the depletion of bulk surfactant in the thin film, and hence at small Ca the
surface concentration is uniformly low and the surface tension is large. The ensuing
Marangoni stress from the tip to the thin film (figure 8c) causes a large film thickening
effect that is shown in figure 7(b) at large El .

4.1. Physiological significance

The parameter variation studies presented above demonstrate that several surfactant
physicochemical properties can influence the mechanics of bubble progression in rigid
capillaries. Since this system mimics the continual interfacial expansion aspects of
airway reopening, it is important interpret these results in terms of their potential
physiological significance. In this section we discuss how changes in two system
variables, βf and Πtip, could influence airway reopening mechanics.

The Rayleigh instability that may be responsible for the collapse or re-closure
of opened airways is a function of the quantity of fluid coating the airway wall.
Specifically, thicker films will result in an unstable system and therefore faster closure
times will occur (Halpern & Grotberg 1993; Otis et al. 1993). As shown in figure 7(b),
the thickness of the fluid coating the tube walls will decrease (increasing βf ) as
the strength of the surfactant is increased. This decrease in fluid thickness would
stabilize the lung by increasing the closure time. However, it should be noted that the
percentage change in βf (∼ 4%) may not be sufficient to affect the stability of the
system. Furthermore, the decrease in film thickness is accompanied by high surface
tension (figure 8c), which may increase airway instability. Figure 13(b) indicates that
βf will increase as the sorption properties of the surfactant are reduced. In addition,
figure 14(c) indicates that the magnitude of τM also increases as the sorption properties
are reduced. Since a larger βf as well as a larger τM can stabilize the lung (Halpern
& Grotberg 1992; 1993; Otis et al. 1993), slow sorption properties may be beneficial
from an airway closure standpoint. However, as demonstrated below, the elevation
of Πtip at low sorption rates can lead to a significant elevation in the stresses at the
tube wall.

The epithelial cells that line the airway wall can be damaged by large compressive
and shear (i.e. normal and tangential) stresses. Figure 20 shows the variation in the
normal and tangential stress along the tube wall for El = 10−3, 1.05, and 5.31. As El
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increases, the pressure required to push the bubble forward, which is measured by
Πtip, also increases. As a result, the fluid pressures are elevated and large compressive
stresses can develop (figure 20a) as Πtip increases. In addition, the increase in
Πtip leads to an elevation of the wall shear stress near the bubble (figure 20b).
Therefore, elevation of the reopening pressure can result in large normal and
tangential stress at the airway wall. Since these stresses can damage the epithelial
cells, which can lead to further surfactant inactivation, low Πtip values are advisable
to prevent lung injury. Since Πtip decreases with increasing sorption rates (figure 13a),
fast sorption properties would be beneficial from an airway reopening standpoint.
However, as discussed above, these fast sorption properties may also lead to lung
instability. Therefore, we hypothesize that an effective surfactant must have optimal
sorption properties that balance low reopening pressures with the maintenance of
stable airways.

5. Conclusions
The model described in this manuscript has been used to conduct an extensive

parametric study that demonstrates the relationships between fluid flow and surfactant
transport during the motion of a semi-infinite bubble in a capillary tube. The
Marangoni parameter (Ma = El/Ca) was investigated by varying both the capillary
(Ca) and elasticity (El ) numbers independently while the influence of bulk diffusion
was investigated by varying the bulk Péclet number (Pe). The effect of surfactant
sorption properties was isolated by varying Sta and Std simultaneously to maintain
a fixed equilibrium point. Finally, the adsorption depth, λ, was investigated under
variable- and fixed-equilibrium-point conditions.

The pressure drop across the interface at the bubble tip, Πtip, contains a surface
tension and viscous component. The surface tension component, γtipκtip, is elevated
if the transport of surfactant to the interface is limited by either adsorptive or
bulk transport processes. Under these conditions, the surface tension in the bubble
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cap region, and thus γtip, can be significantly larger than the equilibrium value.
For constant Ca , the viscous component, 4Ca dus/ds|tip, is governed by the tip
surface velocity gradient. The generation of surface tension gradients can lead to
the generation of Marangoni stresses, τM , near the bubble tip. These are responsible
for removing the recirculating flow pattern from the interface and thus elevating
dus/ds|tip. In addition, τM can modify the surface tension component since the tip
curvature, κtip, is governed by the local Marangoni stress field.

Large Πtip values are physiologically significant since they can be correlated with
an increase in the normal and shear stress at the tube wall. In addition, the quantity
of fluid left behind in the thin film, measured by the dimensionless finger width, βf ,
can be related to lung stability, which will be governed by the magnitude of τM as
well as the thin-film surface tension, γfilm. When τM is directed towards the thin film,
film thickening results (decrease in βf ) while when τM in the transition region is
directed away from the thin film, film thinning results (increase in βf ). As the average
γ increases to values greater than γeq due to low concentrations (large λ), capillary
forces increase and result in a thinner film.

In summary, the current parameter variation study has demonstrated that the
physicochemical properties can have a large impact on the mechanics associated with
semi-infinite bubble progression in rigid capillaries. In future studies will use these
computational techniques to simulate experimental conditions. Specifically, several
dimensionless parameters will be varied concurrently to simulate the variation of the
dimensional variables that can be controlled experimentally (i.e. U , Co and surfactant
type). More advanced computational approaches may include the formation of
surfactant multilayers, which have been both observed (Takamoto et al. 2001)
and modelled (Krueger & Gaver 2000), and simulation of remobilization kinetics
where adsorption is rapid and the bulk concentration is large. Correlation of this
computational model with experimental data will lead to a more complete description
of the physicochemical properties of current pulmonary replacement surfactants.
Identification of these properties and their effects on pulmonary mechanics may lead
to more effect treatment strategies of diseases such as infant and acute respiratory
distress syndrome.
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